报告题目:Efficient finite difference methods for problems on special geometries
报告摘要:Owing to the remarkable characteristics, tubular geometries have been used in many theory and application scenarios. In this talk, we introduce finite difference methods on the tubular geometries. We establish a Curvilinear coordinate system on the tubular geometries. We derive Riemann metrics and expression of Laplacian operator on the tubular geometry coordinate system. Then, we propose finite difference methods spectral methods for a steady model problem, Gray-Scott model and Cahn-Hilliard equations. Numerical results demonstrate efficiency of proposed methods.
个人简介:焦裕建,上海师范大学教授,博士生导师。从事偏微分方程数值解法(谱方法)研究,主要研究流体问题的高精度数值方法、分数阶微分方程的高精度数值方法等。主持国家自然科学基金面上项目、上海市自然科学基金项目。在SIAM J. Numer. Anal.,J. Comput. Phys.,J. Sci. Comput.,Math. Meth. Appl. Sci.等期刊发表论文。
报告时间:2024年9月12日 上午10:15
报告地点:腾讯会议:413-851-295